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ABSTRACT 

In this paper we characterize the pairs of weights (u, w) for which the Hardy- 
Littlewood maximal operator M satisfies a weak type integral inequality of the 
form 

C 
f~, ' : , ,axl>a) udx _-<~-~ f r  ~ l f l )wdx ,  

with C independent of f and 2 > 0, where ~ is an N-function. Moreover, for a 
given weight w, a necessary and sufficient condition is found for the existence 
of a positive weight u such that M satisfies an integral inequality as above. 
Lastly, in the case u = w, we notice that the conclusion of the extrapolation 
theorem given by J. L. Rubio de Francia, which appeared in Am. J. Math. 106 
(1984), can be strengthened to Orlicz spaces. 

1. Introduction 

Let M be the Hardy-Littlewood maximal operator defined by 

(1.1) Mf(x) = sup 1 fQ gee -~ .~  lfldx ( fEL~(R")) ,  

where the supremum is taken over all cubes Q containing x and I Q I is the 
Lebesgue measure of Q. (Cube will always mean a compact cubic interval with 
nonempty interior.) 

Our main aim is to study weak type integral inequalities with weights for M. 
More exactly, we extend the result of Theorem 1 ofB. Muckenhoupt in [8], for 
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Lp(R), to the context of Odicz spaces. Muckenhoupt's result, extended to R n 
(see Theorem IV-l.12 in [3]), asserts that, given p > 1 and u, w two weights on 
R n, M is of  weak type ( p, p) with respect to the measures udx and wdx, that is, 
there exists a positive constant C such that for every f ~ LI~ (R n) and every 2 > 0 

udx < C;~-P f n  IflPwdx 
t { x ~ a ' : M f ( x  ) > ,~ } 'J 

i f  and only if(u, w) satisfies Ap, that is, there is a constant K such that for every 
cube Q we have 

u / \ I Q I ~  w-~/(~-~) =<K. 

By a weight on R ~ we mean a Lebesgue-measurable function with values in 
[0, ~).  Sometimes, we shall write u(E) for SE udx. 

In this paper we characterize the pairs of weights (u, w) on R n which satisfy 
an integral inequality of the form 

(1.3) u{x ER" : Mf(x) > 2 } < ~ ,~ , ~(Ifl)wdx, 

where ¢ is an N-function. The characterizing condition is the natural 
two-weight analogue of the A¢condition introduced by R. Kerman and 
A. Torchinsky [6] to characterize the one-weight strong type inequality for 

I n Orlicz spaces. When (1.3) holds, for everyfE Lio~ ( R )  and every 2 > 0, we shall 
say that M is of  weak type (~, ~)) with respect to (u, w). 

We also characterize the weights w for which there is a positive weight u such 
that M is of weak type (¢, ¢) with respect to (u, w) and we shall finish, in the 
case u = w, with an extrapolation result in the theory of weights. 

Now, we shall present the basic definitions and results concerning N- 
functions and Orlicz spaces which will be used in this paper. 

An N-function is a continuous and convex function ¢:  [0, oo)~ R such that 
¢(s) > 0, s > 0 ,  s-lC(s)--*Ofors~O a n d s - l ~ ( s ) ~ f o r s ~ .  

An N-function ¢ has the representation ¢(s) = S~ ~ where ~: [0, oo)~ R is 
continuous from the right, non-decreasing such that ~(s) > 0, s > 0, ~(0) = 0 

and ~(s)--- oo for s ~ oo. More precisely ~ is the right derivate of O and will be 
called the density function off). 

Associated to ~ we have the function p : [0 ,  o o ) ~ R  defined by p(t)= 
sup{s: ~(s) < t } which has the same aforementioned properties of ¢. We will 
call p the generalized inverse of  ~. 
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We have ~(p(t)) > t, t > 0, and ~(p(t) - e) < t for every positive reals t and 

e such that p(t) - e > O. 
The N-function ~u defined by ¥ ( t ) =  ~ p  is called the complementary 

N-function of  ~. Thus, if o ( s ) =  p-~s p, p > 1, then ~ ( t ) = q - ' t  q where 
p q = p + q .  

Young's inequality asserts that st <= o(s) + ~u(t) for s, t > 0, equality holding 
if and only if ~(s - ) < t < q~(s) or else p(t - ) < s < p(t). 

An N-function 0 is said to satisfy the A~-condition in [0, o0) (or merely the 
A2-condition) if sup,>o o(2s)/o(s) < ~ .  If ~ is the density function of  0, then 
satisfies A2 if and only if there exists a constant a > 1 such that sq~(s) < ao(s), 
s > 0. The A2-condition for ¢ does not transfer necessarily to the complemen- 
tary N-function. The latter satisfies the A2-condition if and only if there exists a 

constant fl > 1 such that riO(s) < sq~(s), s > 0. 
If  (X, d / ,  #) is a a-finite measure space we denote by ~ the space of d / -  

measurable and #-a.e. finite functions from X to R (or to C). If  ~ is an N- 
function the Orlicz spaces L¢(#)----:L~(X, ~l/, #) and Lg(#)=--LI(X, .1/, #) are 
defined by 

and 

L~(u)= { f E ~ "  f x o ( I f l ) d #  < oo } 

L~'(/t) = { f E  ~tt' : fg ELa(#) for all gELs,},  

where ¥ is the complementary N-function of #. 
When # = wdx for a weight w on R" we write L#(w) for L#(/t). 
We have L#(#) C L~'(/~) and i f~  satisfies A2, then L#(/z) = L~'(#). 
The Orlicz space L~'(#) is a Banach space with the norms Ilfll,-- 

sup( Sx I fg I d# : g E S~, }, where S,  = { g E L v, : Sx ~/(Ig I)d# _-< 1 }, and II f II ~,~ -- 
inf{2 > 0 : ~x O(2- ~ I f l  )d# < 1 }, which are called the Orlicz norm and the 
Luxemburg norm, respectively. Both norms are equivalent, actually II f IIt,~ --< 

II f l l , -  -< 2 II fll~,~. 
Holder's inequality asserts that for every fEL~ ' (# )  and every g E L * ( # )  we 

have II fg II, --< II f Ih,~ II g I1~, where q~ and ¥ are complementary N-functions. 

I f  o(s) = s p with p > 1, then, L~'(#) = L , (# )  = L~(#), II fll~,~ = II f L  and 

II g II, -- II g I1~, where pq -- p + q. 
The proofs of above-mentioned results can be found in [7] or in IV-  13 of [9]. 
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2. The weak type and the A¢condition 

DEFINITION 2.1. Let ~ be the density function of  the N-function 4, P the 
generalized-inverse of ~ and let u and w be weights on X. We shall say that the 
pair (u, w) satisfies the A¢condition, or that it belongs to the A¢class, if there 
exists a positive constant C such that for every cube Q and every positive real e 

1 f ~ u d x ) ~  1 p(1/tw)dx) 

If  for some cube Q, ~op(1/ew) ffi ~ we assume that (2.2) holds if~e udx = 0; 
therefore, if u is not identically null (2.2) shows that w(x) > 0 for almost every 
x E R  ". In the same way, if for some cube Q, ~o udx ffi oo we assume that (2.2) 

holds if ~eP(1/ew) = 0 for every e > 0, which implies that if (u, w) satisfies A~ 
then u is locally integrable. 

In the case ¢(s) = p -  Is ", p > 1, (2.1) gives the classical Ap-condition since 
in this situation e does not take part in (2.2) (p is multiplicative and moreover 
it is the inverse of ~) and thus (2.2) reduces to (1.2). 

If fb satisfies the A2-condition, then, every pair (u, w) of the A~-class is in the 
A¢class. (We recall that (u, w) belongs to Al-class if there is a constant Ksuch  
that Mu <= Kw a.e.) 

In fact, i f (u ,  w)~A~ there is a constant K such that for every cube Q 

I Q I- l f udx < K ess inf w(x). 
JQ x6Q 

Let Q be such that u(Q) > 0 and let fl = ess inf{w(x) : x 6 Q}. We have 

(IQl-'  L eudx) ~(lQl- '  Lp(1/ew)dx) < efK ~(p(1/efl)). 

On the other hand, since ~ satisfies A2, there exists a > 0 such that ~2s )  < 
at(s) and s~(s) < a~s) for every s > 0; therefore, there exists a > 0 such that 

~ (2s )<a~( s ) ,  s->_ 0, hence for every t > 0  and e > 0  such that p(t)< 
2(p(t) - e) we have 

¢(p(t)) < ¢(2(p(t) - e)) -<_ a¢(p(t) - e) < at. 

Hence, it follows that (2.2) holds with C = aK. 
When (w, w) belongs to the A¢class we shall say, merely, that w satisfies A~ 

(this is the terminology introduced in [6]). 
In what follows we shall always assume that 4, together with its com- 

plementary N-function, satisfy the As-condition. Examples of  N-functions in 
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th is  s i t ua t ion  are  (among others): OI(S) = S p, p > 1; ¢2(S) = SP(I -~- log(1 + s)), 
p >  1; ¢3(s) = sJ'(1 + log  + s), p >  1; ¢4(s) = J~P where p:  [0, oo)---[0, ~ )  is 
defined by p ( 0 ) = 0 ,  p ( t ) = 2  -n if t e l 2 - ' , 2  - '+ l )  and p ( t ) = 2  ~-~ if t ~  
[2"-t, 2') ,  n a positive integer. 

The condition A, characterizes the pairs of weights (u, w) for which the 
Hardy-Littlewood maximal operator M is of weak type (0, ¢) with respect to 
the measures w dr and u dr ;  more precisely: 

THEOREM 2.3. Let u and w be weights on R'. The following conditions are 
equivalent: 

(a) There exists C such that for every f EL~ (R') and every 2 > 0 

< C ( "  
u {x ER"" My(x) > 2} = ~ - ~  JR" ¢( If[ )wdr. 

(b) There exists C such that for every f E ~  (R') and every cube Q 

(2.4) ¢ I f l d r  u(Q) < C ~l f l )wdr.  

(c) The pair (u, w) satisfies A,. 

NOTE. We use the convention that C denotes an absolute positive constant 
which may change from line to line. 

PROOF 
PROOF OF (a) =* (C). It suffices to prove that for every cube Q we have 

(2.5) (IQl-' fQudx) ,(Ial-' fop(1/w)dx) C, 
with C depending only on ¢ and the constant of condition (a). 

Since we assume that ¢ and its complementary N-function ¢, satisfy the 
A2-condition, there exists a constant a > 1 such that s~(s) < a~s) and sp(s) < 
aC/(s) for every s > 0. 

If u(x) = 0 a.e., then (2.5) is obvious and otherwise (a) implies that w(x) > 0 
a.e. Let Q be a cube such that u(Q) > 0; then, the function w-  ~Xe belongs to 
L~,(w) since otherwise we would have that there is g~L~(w) such that 
gw-IXo " ~ L~(w) and consequently Mg(x) - oo for every x ~ Q, which implies 
that 

u ( a ) < l i m  C ~" ~lgl)wdx=O. 
J ,  
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Therefore 0 < SQ P(1/w)dx < a Sit" q/(w- 1ZQ)Wdx < ~ and hence p(w-1XQ ) = 
p(1/w)zo belongs to LI~(R"). (Moreover p(w-lzQ)~L~(w), since ~(p(s))= 
sp(s) -- ~(s) < (a -- 1)~'(s).) It follows from (a), takingf=p(w-~zQ) and 2 = 

I Q I-~So.p(1/w)dx, that 

O(,Ql-' fQ p(l/w)ax) u(Q) <= c f,, o p(w-,x ))wax <= C fQ p(1/w)ax 

and thus we get (2.5) with constant aC. 

PROOF OF (C)~ (b). Let Q be a cube such that u(Q) > O,fELl~ (R") and let 

e > 0 .  The A¢condition implies that (ew)-~zoEL~,(ew) and then, using 

HOlder's inequality, we have 

(2.6) f I f ldx < 2 II f)CQ IIc¢),~w" II (ew)- zQ JQ 

where the norms used are those of Luxemburg with respect to the measure 

ew dx. 
On the other hand, for every 2 > 0 we get 

fR ~/((2tw)-'zQ)ew dx < ~Q2-1p((2ew)-')dx < 2- '  l Q Ip(CQ(2eu(Q))-'), 
n 

where C is a constant in the A:condit ion for (u, w). Therefore, for 

2=CIQlO-~(1/eu(Q)) and taking into account that s<~)-~(s)~u-I(s), 
s > 0, we have 

f ~, ~u( ( 2ew ) - ~ Xe )ew dx <--_ 
CO-i(1/tu(Q)) 

1 
P(eu(Q)~-I(1/eu(Q))) 

l/eu(Q) .~ 
aC-teu(Q)~, O-~(l/eu(Q))/ 

<= aC -l, 

where a > 1 is such that sp(s) <-_ a~'(s), s > O. We may assume that C > a and 

therefore 

II (ew) - 'zQ <= c I Q I ~)- ~( l/eu( Q )). 

Now, it follows from (2.6) that 

I a 1-1 f I f ldx < 2CO-~(1/eu(a)) II fzQ II~,,w. 
JQ 
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Then, taking e = e(f, Q) = (SQO(lfl)wdx) -l  we have II fxe = 1 and, 
since C does not depend on f, Q and e, we have 

IQI I f ldx<=2CO-'  ¢(Ifl)w , 

whence (2.4) follows, taking into account that ~ is increasing and satisfies A2. 

PROOF OF (b)~(a).  The proof of this implication is easy using an 
appropriate covering theorem. We shall use a Besicovitch type covering 
theorem (see Theorem 1.1 in [4]). 

Let N be a positive integer and MN the truncated maximal operator de- 
fined by 

M~rf(x) = sup 1 f e  xee;~(e)<s I a---~ I f l  dx, 

where ~(Q) is the diameter of Q. 
For 2 > 0  and f ~ L l l ( R  ") let Aa: = { x ~ R " : M s f ( x ) > 2 } .  For every 

xEAa,s there is a cube Q(x), centered at x, such that [ Q(x)l -~ Ieoolfldx > 
a.2, where the constant a. > 0  only depends on the dimension n. Since 
sup{~(Q(x)), x ~Aa,N} < m, we can choose from {Q(x), x ~Aa.v} a sequence 
{ Qk } (possibly finite) such that 

A~ C I,.J Qk, ~ Zo__, < C.Zu,o~, 
k k 

where C, only depends on n. 
Thus, (b) shows that 

u {x~_R" : Mf(x)  > 2 } = lim u(A,~,,v) 
N ~  

=0(2)< C ( 1 :o~ dx) I:l u(ek) 

£f. --< ¢(Ifl )wdx, 
n 

where C depends only on n, 0 and the constant in condition (b), which proves 
(a). Thus, the proof is complete. 

REMARgS. The equivalence (b),=, (c) gives some interesting consequences: 
(1) If there exists a positive weight u, such that (u, w) satisfies A~, then, 
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LI~(R ), where Lo:o~(w) denotes the set of functions f such  that L~,,1o~(w) C t ,, 

SQ 0( I f l  )wdx < oo for all cubes Q. 
(2) Given two weights u and w, with u locally integrable and positive, we 

can consider the maximal operator M,,,w defined by 

Mu,wf(x) = sup 1 fQ x ~ Q - ~ ) .  If lwdx. 

Then, if(u, w) satisfies A~, with u positive, there exists a constant C such that 

M f  < C~-~(M,,w~lfl)) ,  

which generalizes the known inequality M f <  C(Mu,~ Ifl°) ~/p, 1 < p < oo. 
(3) We say that a pair of weights (u, w) satisfies the doubling condition if 

there exists a constant C such that for every cube Q we have that u(2Q) < 
Cw(Q), where 2Q is the double of Q. Taking f - -  ZQ and 2Q instead of Q in 
(2.4) we get that the A¢condition implies the doubling condition. 

Now, our problem is to determine those weights w for which there exists a 
weight u > 0 such that M is of weak type (~, ~) with respect to (u, w). Using 
Theorem 2.3 we obtain the following result: 

TrmOREM 2.7. Given a weight w on It", there exists a weight u > 0 such 
that M is of  weak type (~, (~) with respect to (u, w) i f  and only i f  for every cube ! 
the following two conditions are satisfied: 

(i) For almost every x ~ R", 

) sup sup t~ p((ew)-lzz)dx < ~.  
e>0 xeQ (2 

(ii) sup sup e~( 1"--~- fQp((elQIw)-l)dx)<oo.  
,>o I~Q I QI 

PRooF. Assume that there is u > 0 such that M is of weak type (¢, ¢) with 
respect to (u, w) and let I be a cube. Then, w is positive, u is locally integrable 
and 

sup sup t ~ ~ p ( 1 / e w )  < C / u ( I ) <  oo, 
,>0 I~Q I QI Q 

where C is an A¢constant for (u, w), which implies easily (ii). 
Since u E La~ (R") Lebesgue's differentiation theorem asserts that, for almost 

e v e r y  X E R n, 
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-- lim 1 ~ udx U(X) 
k-~ IQkl ")Qk 

for cubes Qk containing x and such that t~(Qk) ~ O. Therefore, for almost every 
x there exist positive reals a(x) and fl(x) such that for every e > 0 and every 
cube Q, with [ Q I < a(x) and x ~ Q, 

(2.8) e~ ( l Q l-' L pOcflew)dx) < C/fl(x). 

Let Q~(x) be the cube centered at x with IQ~(x) l = a(x) and let I '  be a 

dilation o f / s u c h  that I Q~(x) A I'1 > 0. Then, for every e > 0 and every cube 
Q*(x), centered at x with I Q*(x) tq II  > 0 and I Q*(x) l > a(x), we have 

Therefore, there exists a constant C~(x) > 0 such that for every e > 0 and every 
cube Q containing x with [Q [ > or(x) 

(2.9) e~ ( l Q l-l L p(Xl/eW)dx) < C,(x ). 

Thus, condition (i) follows from (2.8) and (2.9). 
Now, suppose that conditions (i) and (ii) are satisfied for every cube I.  For a 

fixed I,  let 2I be the double of  I and ut the function defined by 

u1(x) =X~(x) sup sup e~ p(x21/ew 
e>0 x~.Q 

It follows from (i) that u t ( x ) > 0  a.e. xEI.  It suffices to prove that (ut, w) 
satisfies A~, since decomposing R n into a mesh of  cubes I;, whose interiors are 
disjoint, and taking 

u(x)= ~ 2-iC -I j, udx) ,  
i--I 

where the C1,'s are A¢constants for (u1,, w), we get that (u, w) satisfies A, and 
moreover u ( x ) >  0 for a.e. x E R  n. 

We have that there exists a > 1 such that ~ s )  < s~(s) < a ~ s )  and ~ 2 s )  _-< 

a~(s), s >-__ 0 which, with the convexity of~,  implies the existence of  a constant 

C such that ~(s + t) <-_ C(¢o(s) + ~(t)) for every s, t > 0. Therefore, given a 
cube Q and e > 0 we obtain 
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If  Q is such that Q f~ I = f~ or if Q f~ I ~ ~ with I Q I < 2 - ~ II I, then 

(IQl-' feeu, dx)~(lQl-~ Lp(1/ew)dx)<C. 

Let Q be such that Q ¢q I ~ ~ and I Q I > 2 - " I I I .  In this situation we have 

co (( Lp ))1 uldx < III ~ 1211-1 (1/w)dx 

elQl-t~(}Ql-Xfe_ p(1/ew)dx ) 

(2.12) < 2neCi2Q]_~¢(12Ql_~ f2QP(1/ew)dx) ' 

where C is a constant that depends only on ~. 
On the other hand, it follows from (ii) that there is a constant C(I) such that 

for every e > 0 and every cube Q' D I 

(2.13) e l Q ' , - ~ ( l Q ' l - l L ,  p(1/ew)dx)<C(I). 

Since 2Q D I the A¢condit ion for (ut, w) follows from (2.10), (2.11), (2.12) 
and (2.13). Thus, the proof  is complete. 

In the case ~(s) = s p, 1 < p < o0, condition (i) of Theorem 2.7 reduces to 
saying that, for every cube I, M(w-I/tP-1)Xl)(X) < o0 for a.e. x E R  n, which is 
equivalent to w-  ~tp -1) being locally integrable, since M is of weak type (1, 1) 
with respect to Lebesgue-measure. On the other hand, (ii) is equivalent to 
supt c e I Q ] -q SQ w-q/Pdx < o0 holding for every cube I, where q is the con- 
jugate to p.  In this way we obtain as a Corollary a result given by J. L. Rubio de 
Francia in [ 10]. Precisely 

COROLLARY 2.14. Given p, with 1 < p < o0, and a weight w on R ~, there 
exists a weight u > 0 such that M is of weak type(p, p) with respect to(u, w) if 
and only if w-q/P is locally integrable and for every cube I 

I Q I -q f w-q/Pdx < sup o0, 
I cQ  J Q  

(2.11) 

and 
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where q is the conjugate to p and the supremum is taken over cubes Q. 

Lastly, in the case u = w, we notice that the conclusion of the extrapolation 
theorem, in the theory of Ap-weights, given by J. L. Rubio de Francia in [11] 
can be easily strengthened to Orlicz spaces. Exactly, Rubio de Francia proves 
the following: 

(2.15) Let T be a sublinear operator defined on a class of  measurable 
functions in R ~. Let 1 < p* < ~ and 1 < p < or. Suppose that T is bounded in 
L: (w)  (respectively of weak type (p*, p*) with respect to w)for every weight 
w GAp°, with a norm that depends only upon the A :  constant for w. Then, for 
every w GAp, T is bounded in LP(w) (respectively T is of weak type (p, p) with 
respect to w), with a norm that depends only upon the Ap-constant for w. (As a 
corollary of this result it can be deduced that the boundedness of T in L~(w) 
can be obtained from the weak type (p*, p*).) 

Another proof of the result stated above is given by J. Garcia-Cuerva in [2]. 
Now, our result is the following: 

THEOREM 2.16 (Extrapolation theorem). Let T be a sublinear operator 
defined on a class of Lebesgue-measurable functions in R". Suppose that for 
some p*, with 1 < p* < oo, T satisfies 

>2}_-< C A - : ~  Ifl:wd# ( f G t l ~  (R"), 2 > 0) w{XGRn : I Tf(x) I 
d n  

for every weight w GA:,  where C depends only on the A:-constant for w. Then, 
for every N-function ~ (which satisfies, together with its complementary N- 
function, the A2-condition ) we have 

for every w EA,,  with the constant C depending only on the A,-constant for w. 

After Theorem 2.16 the results in [1] and [5] (see also IV-3 in [3]) for the 
maximal Hilbert transform and other singular integral operators extend 
trivially to Orlicz spaces. 

PROOF OF THEOREM 2.16. Take an N-function # and let a# and p# be the 
upper and lower indices given by 
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a~ = lim - l o g  h~(s)/log s = inf  - l o g  h~(s)/log s, 
s ~ 0  + 0 < s < l  

tic = lim - log he ( s ) / l o g  s = s u p  - l o g  he ( s ) / l o g  s ,  
$ ~ o 0  s > l  

where 
h,(s) = sup (0- l ( t ) /¢- ' (s t ) ) .  

t > O  

We have that 0 < fl, < a ,  < 1. On the other hand, fl~ > 0 if ~ satisfies the 
A2-condition, since given a > 1 such that sq~(s) < aCgs), s > 0, the function 
s--,s-aO(s) decreases strictly for s > 0 ,  which is equivalent to ¢ -~ ( s t )>  
s~/a¢-l(t) for every s > 1, t > 0, and t h u s / ~ >  a -~. Likewise, a ~ <  1 if the 

complementary N-function of  0 satisfies A2, since in this case there exists b > 1 
such that b~s)<sq~(s), s > 0 ,  and, then, a~ < b -~. We call q~=ag.~> 1 and 
pc = fig-' < oo the lower and upper exponents of ¢, respectively. 

In [6] it is proved that w is in the A¢class i f  and only if  w is in the A~-class, 
where p = q~. Therefore, if w ~A~ then w ~Ar for some r such that 1 < r < q~ 
(see Theorem IV-2.6 in [3]); r and the Am-constant for w depend only on the 
A,-constant for w. On the other hand, w ~As for every s > r. Thus, it follows 
from (2.15) that Tis  simultaneous of  weak type (r, r) and (s, s) with respect to 
the measure w dx, where s is such that p ,  < s < oo, with constants which 
depend only on the A~-constant for w. Then, the proof  is complete taking into 
account the following interpolation theorem: 

TrIEOREM 2.17. Let (X,d¢,a)  and ( Y , ~ , v )  be two a-finite measure 
spaces, 0 an N-function satisfying, together with its complementary N-func- 
tion, the A2-condition and q,, p, the lower and upper exponents of ~. Let 
T: Lr + Ls--" ~ (  Y) be a quasi-additive operator which is simultaneously of 
weak type (r, r) and (s, s) where 1 <= r < q,, p~ < s < ~ .  Then, T maps Lo(g) 
into L~(v) and there exists a constant C, which depends only on the ~ and the 
constants for weak types (r, r) and (s, s), such that 

(2.18) f CglTfl)dv<=CfxCglfl)da ( f ~ L , ( # ) ) .  

Theorem 2.17 seems to be included in some general interpolation results 
(see e.g. [ 12]). For the sake of completeness we include a simple and direct 
proof. 

PROOF OF THEOREM 2.17. It follows easily from the definition of  q, and the 
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A2-condition of 0 that if 0 < p < q, there exists a constant K such that 
¢(ut) < Ku P~t) for every t >_- 0 and 0 < u _-< 1. Likewise, i fp ,  < q < oo there is 

a constant A such that ¢(ut) < AuqC(t) for every t ->_ 0 and u _-> 1. 

Given f~L~(#) and 2 > 0  let f = f a  + f a  where f~ =fxB(a) and B ( 4 ) =  
{xEX:lf(x)l > 2 } .  If  1 _-< r <q~ and p ~ < s  < oo we have thatf~ ELr(/ t)  and 

f  Ls(u). 
By hypothesis we have that there is a constant C such that 

v { y E  Y'[ Tg(y)l > 2 }  < C4-'~x Iglrdu, 

v{y~Y:l  Th(y)l > 2 }  < C4-S f x  Ih I du 

and I T(g + h)l < C(I Tgl + I Th I) for every g ~L,(/z), h EL,(/z) and 4 > O. 
Hence 

f, So ~lrf l )dv= ~(4)v{yEY'ITN(Y)I > 4 } d 4  

< ~(2)v(yEY'ITf~(y)I >2/2C}d4 

+ f o  ~ ~(4)v{y ~ Y:I Tfa(Y)I >4/2C}d4 

<= 2"C'+' yx, lf(x)l'( fo'aX)' da(x) 

+ fx, lf(x)lS( 

where X' = {x E X :1 f(x) I > 0}. 
On the other hand, i f x  ~ X' and p and q are such that r < p < q~, p~ < q < s 

we have 

f O  If(x)l 
f ,~)1 2-r~(2) d2 < c~K 41-r(M[f(x)l)Pfb(lf(x)l) d4 
dO 

aK = If(x)l-'C lf(x)l) 
p - r  

and 

/(x)l S --  q 
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where a > 1 is such that s~(s) < a~(s), s > 0. Thus, we obtain (2.18) with 

constant a ( p  - r) - 12rCr + ~K + a(s - q) - 12sCS ÷ ~A. 

The case s = ~ follows trivially from the preceding using the well-known 

Marcinkiewicz's interpolation theorem or else it may be obtained by a simple 

direct proof. 
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