WEIGHTED WEAK TYPE INTEGRAL INEQUALITIES FOR THE HARDY-LITTLEWOOD MAXIMAL OPERATOR

BY

DIEGO GALLARDO *Departamento de Matemdticas, Facultad de Ciencias, Universidad de Mdlaga, Spain*

ABSTRACT

In this paper we characterize the pairs of weights (u, w) for which the Hardy-Littlewood maximal operator M satisfies a weak type integral inequality of the form

$$
\int_{\{x\in\mathbf{R}^n:Mf(x)>\lambda\}} u dx \leq \frac{C}{\phi(\lambda)} \int_{\mathbf{R}^n} \phi(|f|)w dx,
$$

with C independent of f and $\lambda > 0$, where ϕ is an N-function. Moreover, for a given weight w , a necessary and sufficient condition is found for the existence of a positive weight u such that M satisfies an integral inequality as above. Lastly, in the case $u = w$, we notice that the conclusion of the extrapolation theorem given by J. L. Rubio de Francia, which appeared in Am. J. Math. 106 (1984), can be strengthened to Orlicz spaces.

1. Introduction

Let M be the Hardy-Littlewood maximal operator defined by

(1.1)
$$
Mf(x) = \sup_{x \in Q} \frac{1}{|Q|} \int_{Q} |f| dx \qquad (f \in L^{1}_{loc}(\mathbb{R}^{n})),
$$

where the supremum is taken over all cubes Q containing x and $|Q|$ is the Lebesgue measure of Q . (Cube will always mean a compact cubic interval with nonempty interior.)

Our main aim is to study weak type integral inequalities with weights for M . More exactly, we extend the result of Theorem 1 of B. Muckenhoupt in [8], for

Received August 11, 1987

96 D. GALLARDO Isr. J. Math.

 $L_n(\mathbf{R})$, to the context of Orlicz spaces. Muckenhoupt's result, extended to \mathbf{R}^n (see Theorem IV-1.12 in [3]), asserts that, *given* $p > 1$ *and u, w two weights on R n, M is of weak type (p, p) with respect to the measures udx and wdx, that is, there exists a positive constant C such that for every* $f \in L^1_{loc}(\mathbb{R}^n)$ *and every* $\lambda > 0$

$$
\int_{u\{x\in\mathbb{R}^n\colon Mf(x)>\lambda\}} u dx \le C\lambda^{-p} \int_{\mathbb{R}^n} |f|^p w dx
$$

if and only if (u, w) *satisfies* A_p *, that is, there is a constant K such that for every cube Q we have*

$$
(1.2) \qquad \left(\frac{1}{|Q|}\int_{Q}udx\right)\left(\frac{1}{|Q|}\int_{Q}w^{-1/(p-1)}dx\right)^{p-1}\leq K.
$$

By *a weight* on \mathbb{R}^n we mean a Lebesgue-measurable function with values in $[0, \infty)$. Sometimes, we shall write $u(E)$ for $\int_E u dx$.

In this paper we characterize the pairs of weights (u, w) on \mathbb{R}^n which satisfy an integral inequality of the form

(1.3)
$$
u\{x \in \mathbf{R}^n : Mf(x) > \lambda\} \leq \frac{C}{\phi(\lambda)} \int_{\mathbf{R}^n} \phi(|f|) w dx,
$$

where ϕ is an N-function. The characterizing condition is the natural two-weight analogue of the A_{ϕ} -condition introduced by R. Kerman and A. Torchinsky [6] to characterize the one-weight strong type inequality for Orlicz spaces. When (1.3) holds, for every $f \in L^1_{loc}(\mathbb{R}^n)$ and every $\lambda > 0$, we shall say that *M* is of weak type (ϕ, ϕ) with respect to (u, w) .

We also characterize the weights w for which there is a positive weight u such that M is of weak type (ϕ, ϕ) with respect to (u, w) and we shall finish, in the case $u = w$, with an extrapolation result in the theory of weights.

Now, we shall present the basic definitions and results concerning Nfunctions and Orlicz spaces which will be used in this paper.

An N-function is a continuous and convex function ϕ : $[0, \infty) \rightarrow \mathbb{R}$ *such that* $\phi(s) > 0$, $s > 0$, $s^{-1}\phi(s) \rightarrow 0$ for $s \rightarrow 0$ and $s^{-1}\phi(s) \rightarrow \infty$ for $s \rightarrow \infty$.

An *N*-function ϕ has the representation $\phi(s) = \int_0^s \phi$ where $\phi : [0, \infty) \to \mathbb{R}$ is continuous from the right, non-decreasing such that $\varphi(s) > 0$, $s > 0$, $\varphi(0) = 0$ and $\varphi(s) \rightarrow \infty$ for $s \rightarrow \infty$. More precisely φ is the right derivate of φ and will be called the *density function of* ϕ .

Associated to φ we have the function $\rho:[0,\infty) \to \mathbb{R}$ defined by $\rho(t)=$ $\sup\{s : \varphi(s) \leq t\}$ which has the same aforementioned properties of φ . We will call ρ the generalized inverse of φ .

We have $\varphi(\rho(t)) \ge t$, $t \ge 0$, and $\varphi(\rho(t) - \varepsilon) \le t$ for every positive reals t and ε such that $\rho(t) - \varepsilon \geq 0$.

The *N*-function ψ defined by $\psi(t) = \int_0^t \rho$ is called the complementary *N-function of* ϕ *. Thus, if* $\phi(s) = p^{-1}s^p$ *,* $p > 1$ *, then* $\psi(t) = q^{-1}t^q$ *where* $pq = p + q$.

Young's inequality asserts that $st \leq \phi(s) + \psi(t)$ *for s,* $t \geq 0$ *, equality holding* if and only if $\varphi(s -) \le t \le \varphi(s)$ or else $\rho(t -) \le s \le \rho(t)$.

An N-function ϕ is said to satisfy the Δ -*condition* in [0, ∞) (or merely the Δ_2 -condition) if sup_{s >0} $\phi(2s)/\phi(s) < \infty$. If ϕ is the density function of ϕ , then ϕ satisfies Δ_2 if and only if there exists a constant $\alpha > 1$ such that $s\varphi(s) < \alpha\varphi(s)$, $s > 0$. The Δ_2 -condition for ϕ does not transfer necessarily to the complementary N-function. The latter satisfies the Δ_2 -condition if and only if there exists a constant $\beta > 1$ such that $\beta \phi(s) < s\phi(s)$, $s > 0$.

If (X, \mathcal{M}, μ) is a σ -finite measure space we denote by \mathfrak{M} the space of \mathcal{M} measurable and μ -a.e. finite functions from X to R (or to C). If ϕ is an Nfunction *the Orlicz spaces* $L_{\phi}(\mu) \equiv L_{\phi}(X, \mathcal{M}, \mu)$ and $L_{\phi}^{*}(\mu) \equiv L_{\phi}^{*}(X, \mathcal{M}, \mu)$ are defined by

$$
L_{\phi}(\mu) = \left\{ f \in \mathfrak{M} : \int_{X} \phi(|f|) d\mu < \infty \right\}
$$

and

$$
L_{\phi}^*(\mu) = \{ f \in \mathcal{M} : fg \in L_1(\mu) \text{ for all } g \in L_{\psi} \},
$$

where ψ is the complementary N-function of ϕ .

When $\mu = wdx$ for a weight w on \mathbb{R}^n we write $L_{\phi}(w)$ for $L_{\phi}(\mu)$.

We have $L_{\phi}(\mu) \subset L_{\phi}^{*}(\mu)$ and if ϕ satisfies Δ_{2} , then $L_{\phi}(\mu) = L_{\phi}^{*}(\mu)$.

The Orlicz space $L^*_{\phi}(\mu)$ is a Banach space with the norms $|| f ||_{\phi} =$ $\sup\{\int_X|\mathit{fg}\,|\mathit{d}\mu:g\in S_\psi\}\,$, where $S_\psi = \{g\in L_\psi: \int_X\psi(|g|)\mathit{d}\mu\leq 1\}$, and $||\mathit{f}||_{\phi}$ = $\inf\{\lambda > 0 : (x \phi(\lambda^{-1}|f|))d\mu \leq 1\}$, which are called *the Orlicz norm* and *the Luxemburg norm*, respectively. Both norms are equivalent, actually $|| f ||_{\phi} \le$ $\|f\|_{\phi} \leq 2 \|f\|_{\langle\phi\rangle}$.

Holder's inequality asserts that for every $f \in L^*_{\phi}(\mu)$ and every $g \in L^*_{\phi}(\mu)$ we have $||fg||_1 \leq ||f||_{\langle \phi \rangle} ||g||_{\psi}$, where ϕ and ψ are complementary N-functions.

If $\phi(s) = s^p$ with $p > 1$, then, $L^*_{\phi}(\mu) = L_{\phi}(\mu) = L_p(\mu)$, $|| f ||_{\phi} = || f ||_p$ and $||g||_{\psi} = ||g||_{q}$, where $pq = p + q$.

The proofs of above-mentioned results can be found in $[7]$ or in IV-13 of $[9]$.

2. The weak type and the A_{ϕ} -condition

DEFINITION 2.1. Let φ be the density function of the *N*-function φ , ρ the generalized-inverse of φ and let u and w be weights on X. We shall say that the pair (u, w) satisfies the A_{ϕ} -condition, or that it belongs to the A_{ϕ} -class, if there exists a positive constant C such that for every cube Q and every positive real ε

$$
(2.2)\qquad \qquad \left(\frac{1}{|Q|}\int_{Q} \epsilon u dx\right)\varphi\left(\frac{1}{|Q|}\int_{Q} \rho(1/\epsilon w) dx\right)\leq C.
$$

If for some cube Q, $\int_{Q} \rho(1/\epsilon w) = \infty$ we assume that (2.2) holds if $\int_{Q} u dx = 0$; therefore, if u is not identically null (2.2) shows that $w(x) > 0$ for almost every $x \in \mathbb{R}^n$. In the same way, if for some cube Q, $\int_0 u dx = \infty$ we assume that (2.2) holds if $\int_{Q} \rho(1/\epsilon w) = 0$ for every $\epsilon > 0$, which implies that if (u, w) satisfies A_{ϕ} then u is locally integrable.

In the case $\phi(s) = p^{-1}s^p$, $p > 1$, (2.1) gives the classical A_p -condition since in this situation ε does not take part in (2.2) (ρ is multiplicative and moreover it is the inverse of φ) and thus (2.2) reduces to (1.2).

If ϕ satisfies the Δ_2 -condition, then, every pair (u, w) of the A_1 -class is in the A_{ϕ} -class. (We recall that (u, w) belongs to A_1 -class if there is a constant K such that $Mu \leq Kw$ a.e.)

In fact, if $(u, w) \in A_1$ there is a constant K such that for every cube Q

$$
|Q|^{-1}\int_{Q} u dx \leq K \text{ ess inf } w(x).
$$

Let Q be such that $u(Q) > 0$ and let $\beta = \text{ess inf}\{w(x) : x \in Q\}$. We have

$$
\left(|Q|^{-1}\int_{Q} \varepsilon u dx\right)\varphi\left(|Q|^{-1}\int_{Q} \rho(1/\varepsilon w) dx\right)\leq \varepsilon \beta K \varphi(\rho(1/\varepsilon \beta)).
$$

On the other hand, since ϕ satisfies Δ_2 , there exists $a > 0$ such that $\phi(2s) \leq$ $a\phi(s)$ and $s\phi(s) \le a\phi(s)$ for every $s \ge 0$; therefore, there exists $\alpha > 0$ such that $\varphi(2s) \le \alpha \varphi(s), s \ge 0$, hence for every $t > 0$ and $\varepsilon > 0$ such that $\rho(t) \le$ $2(\rho(t)-\varepsilon)$ we have

$$
\varphi(\rho(t)) \leq \varphi(2(\rho(t)-\varepsilon)) \leq \alpha \varphi(\rho(t)-\varepsilon) \leq \alpha t.
$$

Hence, it follows that (2.2) holds with $C = \alpha K$.

When (w, w) belongs to the A_{ϕ} -class we shall say, merely, that w satisfies A_{ϕ} (this is the terminology introduced in [6]).

In what follows we shall always assume that ϕ , *together with its complementary N-function, satisfy the* Δ_2 -condition. Examples of N-functions in this situation are (among others): $\phi_1(s) = s^p$, $p > 1$; $\phi_2(s) = s^p(1 + \log(1 + s))$, $p > 1$; $\phi_3(s) = s^p(1 + \log^+ s), p > 1$; $\phi_4(s) = \int_0^s \rho$ where $\rho : [0, \infty) \to [0, \infty)$ is defined by $\rho(0)=0$, $\rho(t)=2^{-n}$ if $t\in[2^{-n},2^{-n+1})$ and $\rho(t)=2^{n-1}$ if $t\in$ $[2^{n-1}, 2^n)$, *n* a positive integer.

The condition A_{ϕ} characterizes the pairs of weights (u, w) for which the Hardy-Littlewood maximal operator M is of weak type (ϕ, ϕ) with respect to the measures $w dx$ and $u dx$; more precisely:

THEOREM 2.3. *Let u and w be weights on R'. The following conditions are equivalent:*

(a) *There exists C such that for every* $f \in L^1_{loc}(\mathbb{R}^n)$ *and every* $\lambda > 0$

$$
u\{x \in \mathbf{R}^n : Mf(x) > \lambda\} \leq \frac{C}{\phi(\lambda)} \int_{\mathbf{R}^n} \phi(|f|) w dx.
$$

(b) *There exists C such that for every* $f \in L^1_{loc}(\mathbb{R}^n)$ *and every cube Q*

(2.4)
$$
\phi\left(\frac{1}{|Q|}\int_Q|f|dx\right)u(Q) \leq C\int_Q \phi(|f|)wdx.
$$

(c) The pair (u, w) satisfies A_{ϕ} .

NOTE. We use the convention that C denotes an absolute positive constant which may change from line to line.

PROOF

PROOF OF (a) \Rightarrow (c). It suffices to prove that for every cube Q we have

$$
(2.5) \qquad \left(|Q|^{-1}\int_{Q}udx\right)\varphi\left(|Q|^{-1}\int_{Q}\rho(1/w)dx\right)\leq C,
$$

with C depending only on ϕ and the constant of condition (a).

Since we assume that ϕ and its complementary N-function ψ satisfy the Δ_2 -condition, there exists a constant $\alpha > 1$ such that $s\varphi(s) \leq \alpha \varphi(s)$ and $s\rho(s) \leq$ $\alpha \psi(s)$ for every $s \geq 0$.

If $u(x) = 0$ a.e., then (2.5) is obvious and otherwise (a) implies that $w(x) > 0$ a.e. Let Q be a cube such that $u(Q) > 0$; then, the function $w^{-1}\chi_0$ belongs to $L_v(w)$ since otherwise we would have that there is $g \in L_v(w)$ such that $gw^{-1}\chi_0 \notin L_1(w)$ and consequently $Mg(x) = \infty$ for every $x \in Q$, which implies that

$$
u(Q) \leq \lim_{\lambda \to \infty} \frac{C}{\phi(\lambda)} \int_{Q} \phi(|g|) w dx = 0.
$$

Therefore $0 < \int_{0}^{\infty} \rho(1/w)dx \leq \alpha \int_{\mathbb{R}^{n}} \psi(w^{-1}\chi_{0})wdx < \infty$ and hence $\rho(w^{-1}\chi_{0}) =$ $\rho(1/w)\chi_0$ belongs to $L^1_{loc}(\mathbb{R}^n)$. (Moreover $\rho(w^{-1}\chi_0) \in L^2(v)$, since $\phi(\rho(s)) =$ $s\rho(s) - \psi(s) \leq (\alpha - 1)\psi(s)$.) It follows from (a), *taking* $f = \rho(w^{-1}\chi_0)$ and $\lambda =$ $|Q|^{-1}$ $\int_{Q} \rho(1/w) dx$, that

$$
\phi\left(|Q|^{-1}\int_{Q}\rho(1/w)dx\right)u(Q)\leq C\int_{\mathbb{R}^{n}}\phi(\rho(w^{-1}\chi_{Q}))wdx\leq C\int_{Q}\rho(1/w)dx
$$

and thus we get (2.5) with constant αC .

PROOF OF (c) \Rightarrow (b). Let Q be a cube such that $u(Q) > 0, f \in L^1_{loc}(\mathbb{R}^n)$ and let $\varepsilon > 0$. The A_{ϕ} -condition implies that $(\varepsilon w)^{-1} \chi_0 \in L_{\psi}(\varepsilon w)$ and then, using Hölder's inequality, we have

$$
(2.6) \t\t \t\t \int_{Q} |f| dx \leq 2 \| f \chi_{Q} \|_{(\phi),\text{ew}} \cdot \| (\varepsilon w)^{-1} \chi_{Q} \|_{(\psi),\text{ew}},
$$

where the norms used are those of Luxemburg with respect to the measure *ew dx.*

On the other hand, for every $\lambda > 0$ we get

$$
\int_{\mathbf{R}^n} \psi((\lambda \varepsilon w)^{-1} \chi_Q) \varepsilon w \, dx \leq \int_Q \lambda^{-1} \rho((\lambda \varepsilon w)^{-1}) dx \leq \lambda^{-1} |Q| \rho(C Q(\lambda \varepsilon u(Q))^{-1}),
$$

where C is a constant in the A_{ϕ} -condition for (u, w) . Therefore, for $\lambda = C |Q| \phi^{-1}(1/\epsilon u(Q))$ and taking into account that $s \leq \phi^{-1}(s) \psi^{-1}(s)$, $s \geq 0$, we have

$$
\int_{\mathbb{R}^n} \psi((\lambda \varepsilon w)^{-1} \chi_Q) \varepsilon w \, dx \le \frac{1}{C \phi^{-1}(1/\varepsilon u(Q))} \rho \left(\frac{1}{\varepsilon u(Q) \phi^{-1}(1/\varepsilon u(Q))} \right)
$$

$$
\le \alpha C^{-1} \varepsilon u(Q) \psi \left(\frac{1/\varepsilon u(Q)}{\phi^{-1}(1/\varepsilon u(Q))} \right)
$$

$$
\le \alpha C^{-1},
$$

where $\alpha > 1$ is such that $s\rho(s) \leq \alpha \psi(s)$, $s \geq 0$. We may assume that $C \geq \alpha$ and therefore

$$
\| (\varepsilon w)^{-1} \chi_Q \|_{(\psi),\varepsilon w} \leq C \, |Q| \phi^{-1}(1/\varepsilon u(Q)).
$$

Now, it follows from (2.6) that

$$
|Q|^{-1} \int_{Q} |f| dx \leq 2C\phi^{-1}(1/\epsilon u(Q)) \| f\chi_{Q} \|_{(\phi),\epsilon w}.
$$

Then, taking $\varepsilon = \varepsilon(f, Q) = (\int_Q \phi(|f|) w dx)^{-1}$ we have $|| f \chi_Q ||_{\phi} = 1$ and, since C does not depend on f, Q and ε , we have

$$
\frac{1}{|Q|}\int_{Q}|f|dx \leq 2C\phi^{-1}\left(\frac{1}{u(Q)}\int_{Q}\phi(|f|)wdx\right),
$$

whence (2.4) follows, taking into account that ϕ is increasing and satisfies Δ_2 .

PROOF OF (b) \Rightarrow (a). The proof of this implication is easy using an appropriate covering theorem. We shall use a Besicovitch type covering theorem (see Theorem 1.1 in [4]).

Let N be a positive integer and M_N the truncated maximal operator defined by

$$
M_N f(x) = \sup_{x \in Q; \, \delta(Q) \leq N} \frac{1}{|Q|} \int_Q |f| \, dx,
$$

where $\delta(Q)$ is the diameter of Q.

For $\lambda > 0$ and $f \in L^1_{loc}(\mathbb{R}^n)$ let $A_{\lambda,N} = \{x \in \mathbb{R}^n : M_N f(x) > \lambda\}$. For every $x \in A_{\lambda,N}$ there is a cube $Q(x)$, centered at x, such that $|Q(x)|^{-1} \int_{Q(x)} |f| dx$ $a_n \lambda$, where the constant $a_n > 0$ only depends on the dimension n. Since $\sup{\{\delta(Q(x)), x \in A_{\lambda,N}\}} < \infty$, we can choose from $\{Q(x), x \in A_{\lambda,N}\}\)$ a sequence ${Q_k}$ (possibly finite) such that

$$
A_{\lambda} \subset \bigcup_{k} Q_{k}, \qquad \sum_{k} \chi_{Q_{k}} \leq C_{n} \chi_{\cup_{k} Q_{k}},
$$

where C_n only depends on n.

Thus, (b) shows that

$$
u\{x \in \mathbb{R}^n : Mf(x) > \lambda\} = \lim_{N \to \infty} u(A_{\lambda,N})
$$

\n
$$
\leq \frac{C}{\phi(\lambda)} \sum_k \phi\left(\frac{1}{|Q_k|} \int_{Q_k} |f| dx\right) u(Q_k)
$$

\n
$$
\leq \frac{C}{\phi(\lambda)} \int_{\mathbb{R}^n} \phi(|f|) w dx,
$$

where C depends only on n , ϕ and the constant in condition (b), which proves (a). Thus, the proof is complete.

REMARKS. The equivalence (b) \Rightarrow (c) gives some interesting consequences: (1) If there exists a positive weight u, such that (u, w) satisfies A_{ϕ} , then, 102 D. GALLARDO Isr. J. Math.

 $L_{\phi,loc}(w) \subset L^1_{loc}(\mathbb{R}^n)$, where $L_{\phi,loc}(w)$ denotes the set of functions f such that $\int_{Q} \phi(|f|) w dx < \infty$ for all cubes Q.

(2) Given two weights u and w, with u locally integrable and positive, we can consider the maximal operator $M_{u,w}$ defined by

$$
M_{u,w}f(x) = \sup_{x \in Q} \frac{1}{u(Q)} \int_Q |f| w dx.
$$

Then, *if*(u , w) satisfies A_{ϕ} , with u positive, there exists a constant C such that

$$
Mf\leq C\phi^{-1}(M_{u,w}\phi(|f|)),
$$

which generalizes the known inequality $Mf \leq C(M_{u,w} |f|^p)^{1/p}$, $1 < p < \infty$.

(3) We say that a pair of weights (u, w) satisfies *the doubling condition* if there exists a constant C such that for every cube Q we have that $u(2Q) \leq$ *Cw(Q), where 2Q is the double of Q. Taking* $f = \chi_0$ *and 2Q instead of Q in* (2.4) we get that *the* A_{ϕ} *-condition implies the doubling condition*.

Now, our problem is to determine those weights w for which there exists a weight $u > 0$ such that M is of weak type (ϕ, ϕ) with respect to (u, w) . Using Theorem 2.3 we obtain the following result:

THEOREM 2.7. *Given a weight w on* \mathbb{R}^n , there exists a weight $u > 0$ such *that M is of weak type* (ϕ, ϕ) with respect to (u, w) if and only if for every cube I *the following two conditions are satisfied:*

(i) *For almost every* $x \in \mathbb{R}^n$,

$$
\sup_{\varepsilon>0}\sup_{x\in\mathcal{Q}}\varepsilon\varphi\left(\frac{1}{|\mathcal{Q}|}\int_{\mathcal{Q}}\rho((\varepsilon w)^{-1}\chi_{I})dx\right)<\infty.
$$

(ii)
$$
\sup_{\varepsilon>0}\sup_{I\subset Q}\varepsilon\varphi\left(\frac{1}{|Q|}\int_{Q}\rho((\varepsilon|Q|w)^{-1})dx\right)<\infty.
$$

PROOF. Assume that there is $u > 0$ such that M is of weak type (ϕ, ϕ) with respect to (u, w) and let I be a cube. Then, w is positive, u is locally integrable and

$$
\sup_{\varepsilon>0}\sup_{I\subset Q}\varepsilon\frac{1}{|Q|}\varphi\left(\frac{1}{|Q|}\int_{Q}\rho(1/\varepsilon w)dx\right)\leq C/u(I)<\infty,
$$

where C is an A_{ϕ} -constant for (u, w) , which implies easily (ii).

Since $u \in L^1_{loc}(\mathbb{R}^n)$ Lebesgue's differentiation theorem asserts that, for almost every $x \in \mathbb{R}^n$,

$$
u(x) = \lim_{k \to \infty} \frac{1}{|Q_k|} \int_{Q_k} u dx
$$

for cubes Q_k containing x and such that $\delta(Q_k) \rightarrow 0$. Therefore, for almost every x there exist positive reals $\alpha(x)$ and $\beta(x)$ such that for every $\varepsilon > 0$ and every cube Q, with $|Q| \leq \alpha(x)$ and $x \in Q$,

$$
(2.8) \t\t \t\t \epsilon\varphi\left(|Q|^{-1}\int_{Q}\rho(\chi_{I}/\epsilon w)dx\right)\leq C/\beta(x).
$$

Let $Q_1(x)$ be the cube centered at x with $|Q_1(x)| = \alpha(x)$ and let I' be a dilation of I such that $|Q_1(x) \cap I'| > 0$. Then, for every $\varepsilon > 0$ and every cube $Q^*(x)$, centered at x with $|Q^*(x) \cap I| > 0$ and $|Q^*(x)| > \alpha(x)$, we have

$$
\varepsilon\varphi\bigg(|Q^*(x)|^{-1}\int_{Q^*(x)}\rho(\chi_I/\varepsilon w)dx\bigg)\leq C|I'|/u(Q_1(x)\cap I').
$$

Therefore, there exists a constant $C_1(x) > 0$ such that for every $\varepsilon > 0$ and every cube Q containing x with $|Q| > \alpha(x)$

$$
(2.9) \t\t \t\t \epsilon\varphi\left(|Q|^{-1}\int_{Q}\rho(\chi_{I}/\epsilon w)dx\right)\leq C_{1}(x).
$$

Thus, condition (i) follows from (2.8) and (2.9).

Now, suppose that conditions (i) and (ii) are satisfied for every cube I. For a fixed I, let 2I be the double of I and u_I the function defined by

$$
u_I(x) = \chi_I(x) \left(\sup_{\varepsilon > 0} \sup_{x \in Q} \varepsilon \varphi \left(\frac{1}{|Q|} \int_Q \rho(\chi_{2I}/\varepsilon w) dx \right) \right)^{-1}
$$

It follows from (i) that $u_1(x) > 0$ a.e. $x \in I$. It suffices to prove that (u_1, w) satisfies A_{ϕ} , since decomposing \mathbb{R}^{n} into a mesh of cubes I_{i} , whose interiors are disjoint, and taking

$$
u(x) = \sum_{i=1}^{\infty} 2^{-i} C_{I_i}^{-1} u_{I_i}(x),
$$

where the C_{I_i} 's are A_{ϕ} -constants for (u_{I_i}, w) , we get that (u, w) satisfies A_{ϕ} and moreover $u(x) > 0$ for a.e. $x \in \mathbb{R}^n$.

We have that there exists $\alpha > 1$ such that $\phi(s) \leq s\phi(s) \leq \alpha\phi(s)$ and $\phi(2s) \leq$ $\alpha\phi(s)$, $s \ge 0$ which, with the convexity of ϕ , implies the existence of a constant C such that $\varphi(s + t) \le C(\varphi(s) + \varphi(t))$ for every s, $t \ge 0$. Therefore, given a cube Q and $\varepsilon > 0$ we obtain

$$
\begin{aligned} \left(|Q|^{-1}\int_{Q}\varepsilon u_{I}dx\right)\varphi\left(|Q|^{-1}\int_{Q}\rho(1/\varepsilon w)dx\right) \\ &\leq C\left(1+\left(|Q|^{-1}\int_{Q}\varepsilon u_{I}dx\right)\varphi\left(|Q|^{-1}\int_{Q-2I}\rho(1/\varepsilon w)dx\right)\right). \end{aligned}
$$

If Q is such that $Q \cap I = \emptyset$ or if $Q \cap I \neq \emptyset$ with $|Q| < 2^{-n}|I|$, then $\left(|Q|^{-1}\int_{Q} \varepsilon u_{I} dx\right)\varphi\left(|Q|^{-1}\int_{Q} \rho(1/\varepsilon w) dx\right)\leq C.$

Let Q be such that $Q \cap I \neq \emptyset$ and $|Q| \geq 2^{-n}|I|$. In this situation we have

(2.11)
$$
\int_{Q} u_{I} dx \leq |I| \left(\varphi \left(|2I|^{-1} \int_{2I} \rho(1/w) dx \right) \right)^{-1}
$$

and

$$
\varepsilon |Q|^{-1} \varphi\left(|Q|^{-1} \int_{Q-2l} \rho(1/\varepsilon w) dx\right)
$$

\n
$$
\leq 2^{n} \varepsilon C |2Q|^{-1} \varphi\left(|2Q|^{-1} \int_{2Q} \rho(1/\varepsilon w) dx\right),
$$

where C is a constant that depends only on ϕ .

On the other hand, it follows from (ii) that there is a constant $C(I)$ such that for every $\varepsilon > 0$ and every cube $Q' \supset I$

$$
(2.13) \t\t \varepsilon |Q'|^{-1} \varphi \bigg(|Q'|^{-1} \int_{Q'} \rho(1/\varepsilon w) dx \bigg) \leq C(I).
$$

Since $2Q \supset I$ the A_{ϕ} -condition for (u_I, w) follows from (2.10), (2.11), (2.12) and (2.13). Thus, the proof is complete.

In the case $\phi(s) = s^p$, $1 < p < \infty$, condition (i) of Theorem 2.7 reduces to saying that, for every cube *I*, $M(w^{-1/(p-1)}\chi_l)(x) < \infty$ for a.e. $x \in \mathbb{R}^n$, which is equivalent to $w^{-1/(p-1)}$ being locally integrable, since M is of weak type (1, 1) with respect to Lebesgue-measure. On the other hand, (ii) is equivalent to $\sup_{t \in Q} |Q|^{-q} \int_Q w^{-q/p} dx < \infty$ holding for every cube I, where q is the conjugate to p . In this way we obtain as a Corollary a result given by J. L. Rubio de Francia in [10]. Precisely

COROLLARY 2.14. *Given p, with* $1 < p < \infty$, and a weight w on \mathbb{R}^n , there *exists a weight u* > 0 *such that M is of weak type* (p, p) with respect to (u, w) if and only if $w^{-q/p}$ is locally integrable and for every cube I

$$
\sup_{I\subset Q}|Q|^{-q}\int_{Q}w^{-q/p}dx<\infty,
$$

where q is the conjugate to p and the supremum is taken over cubes Q.

Lastly, in the case $u = w$, we notice that the conclusion of *the extrapolation theorem*, in the theory of A_p -weights, given by J. L. Rubio de Francia in [11] can be easily strengthened to Orlicz spaces. Exactly, Rubio de Francia proves the following:

(2.15) *Let T be a sublinear operator defined on a class of measurable functions in* \mathbb{R}^n *. Let* $1 \leq p^* < \infty$ and $1 < p < \infty$ *. Suppose that* T is bounded in $L^{p^*}(w)$ (respectively of weak type (p^* , p^*) with respect to w) for every weight $w \in A_{p^*}$, with a norm that depends only upon the A_{p^*} constant for w. Then, for *every* $w \in A_p$, *T* is bounded in $L^p(w)$ (respectively *T* is of weak type (p, p) with *respect to w), with a norm that depends only upon the* A_p *-constant for w.* (As a corollary of this result it can be deduced that the boundedness of T in $L^p(w)$ can be obtained from the weak type (p^* , p^*).)

Another proof of the result stated above is given by J. Garcia-Cuerva in [2]. Now, our result is the following:

THEOREM 2.16 (Extrapolation theorem). *Let T be a sublinear operator defined on a class of Lebesgue-measurable functions in R". Suppose that for some* p^* *, with* $1 \leq p^* < \infty$ *, T satisfies*

$$
w\{x \in \mathbf{R}^n : |Tf(x)| > \lambda\} \le C\lambda^{-p^*} \int_{\mathbf{R}^n} |f|^{p^*} w d\mu \qquad (f \in L^1_{loc}(\mathbf{R}^n), \lambda > 0)
$$

for every weight w \in *A_p**, *where C depends only on the A_p*-constant for w. Then, for every N-function* ϕ *(which satisfies, together with its complementary Nfunction, the* Δ_2 -condition) we have

$$
\int_{\mathbf{R}^n} \phi(|Tf|) w d\mu \leq C \int_{\mathbf{R}^n} \phi(|f|) w d\mu \qquad (f \in L^1_{loc}(\mathbf{R}^n))
$$

for every w \in *A*_{ϕ}, with the constant C depending only on the A_{ϕ} -constant for w.

After Theorem 2.16 the results in [1] and [5] (see also IV-3 in [3]) for the maximal Hilbert transform and other singular integral operators extend trivially to Orlicz spaces.

PROOF OF THEOREM 2.16. Take an N-function ϕ and let α_{ϕ} and β_{ϕ} be the *upper and lower indices* given by

$$
\alpha_{\phi} = \lim_{s \to 0^{+}} -\log h_{\phi}(s) / \log s = \inf_{0 < s < 1} -\log h_{\phi}(s) / \log s,
$$
\n
$$
\beta_{\phi} = \lim_{s \to \infty} -\log h_{\phi}(s) / \log s = \sup_{s > 1} -\log h_{\phi}(s) / \log s,
$$

where

$$
h_{\phi}(s) = \sup_{t>0} (\phi^{-1}(t)/\phi^{-1}(st)).
$$

We have that $0 \leq \beta_{\phi} \leq \alpha_{\phi} \leq 1$. On the other hand, $\beta_{\phi} > 0$ if ϕ satisfies the Δ_2 -condition, since given $a > 1$ such that $s\varphi(s) < a\varphi(s)$, $s > 0$, the function $s \rightarrow s^{-a}\phi(s)$ decreases strictly for $s > 0$, which is equivalent to $\phi^{-1}(st)$ $s^{1/a}\phi^{-1}(t)$ for every $s > 1$, $t > 0$, and thus $\beta_{\phi} > a^{-1}$. Likewise, $\alpha_{\phi} < 1$ if the complementary N-function of ϕ satisfies Δ_2 , since in this case there exists $b > 1$ such that $b\phi(s) < s\phi(s)$, $s > 0$, and, then, $\alpha_{\phi} \leq b^{-1}$. We call $q_{\phi} = \alpha_{\phi}^{-1} > 1$ and $p_{\phi} = \beta_{\phi}^{-1} < \infty$ the lower and upper exponents of ϕ , respectively.

In [6] it is proved that *w is in the* A_{ϕ} *-class if and only if w is in the* A_{ρ} *-class, where p =* q_{ϕ} *.* Therefore, if $w \in A_{\phi}$ then $w \in A_{r}$ for some r such that $1 < r < q_{\phi}$ (see Theorem IV-2.6 in [3]); r and the A_r -constant for w depend only on the A_{ϕ} -constant for w. On the other hand, $w \in A_{s}$ for every $s > r$. Thus, it follows from (2.15) that T is simultaneous of weak type (r, r) and (s, s) with respect to the measure *w dx*, where *s* is such that $p_0 < s < \infty$, with constants which depend only on the A_{ϕ} -constant for w. Then, the proof is complete taking into account the following *interpolation theorem:*

THEOREM 2.17. Let (X, \mathcal{M}, μ) and (Y, \mathcal{F}, ν) be two *o-finite measure* spaces, ϕ an *N-function satisfying, together with its complementary N-function, the* Δ_2 -condition and q_{ϕ} , p_{ϕ} the lower and upper exponents of ϕ . Let $T: L_r + L_s \rightarrow \mathfrak{M}(Y)$ be a quasi-additive operator which is simultaneously of *weak type (r, r) and (s, s) where* $1 \le r < q_\phi$, $p_\phi < s \le \infty$. *Then, T maps* $L_\phi(\mu)$ *into* $L_{\phi}(v)$ and there exists a constant C, which depends only on the ϕ and the *constants for weak types (r, r) and (s, s), such that*

$$
(2.18) \qquad \int_Y \phi(|Tf|)d\nu \leq C \int_X \phi(|f|)d\mu \qquad (f \in L_\phi(\mu)).
$$

Theorem 2.17 seems to be included in some general interpolation results (see e.g. [12]). For the sake of completeness we include a simple and direct proof.

PROOF OF THEOREM 2.17. It follows easily from the definition of q_{ϕ} and the

 Δ_2 -condition of ϕ that if $0 < p < q_\phi$ there exists a constant K such that $\phi(ut) \leq Ku^p \phi(t)$ for every $t \geq 0$ and $0 \leq u \leq 1$. Likewise, if $p_e < q < \infty$ there is a constant A such that $\phi(ut) \leq Au^q \phi(t)$ for every $t \geq 0$ and $u \geq 1$.

Given $f \in L_{\phi}(\mu)$ and $\lambda > 0$ let $f = f_{\lambda} + f^{\lambda}$ where $f_{\lambda} = f \chi_{B(\lambda)}$ and $B(\lambda) =$ ${x \in X : |f(x)| > \lambda}$. If $1 \le r < q_\phi$ and $p_\phi < s < \infty$ we have that $f_\lambda \in L_r(\mu)$ and $f^{\lambda} \in L_{\alpha}(\mu)$.

By hypothesis we have that there is a constant C such that

$$
\nu\{y \in Y : |Tg(y)| > \lambda\} \le C\lambda^{-r} \int_X |g|^r d\mu,
$$

$$
\nu\{y \in Y : |Th(y)| > \lambda\} \le C\lambda^{-s} \int_X |h|^s d\mu
$$

and $|T(g+h)| \leq C(|Tg| + |Th|)$ for every $g \in L_r(\mu)$, $h \in L_s(\mu)$ and $\lambda > 0$. Hence

$$
\int_{\gamma} \phi(|Tf|)dv = \int_{0}^{\infty} \phi(\lambda)v\{y \in Y : |Tf(y)| > \lambda\}d\lambda
$$

\n
$$
\leq \int_{0}^{\infty} \phi(\lambda)v\{y \in Y : |Tf_{\lambda}(y)| > \lambda/2C\}d\lambda
$$

\n
$$
+ \int_{0}^{\infty} \phi(\lambda)v\{y \in Y : |Tf^{\lambda}(y)| > \lambda/2C\}d\lambda
$$

\n
$$
\leq 2^{r}C^{r+1} \int_{X'} |f(x)|^{r} \left(\int_{0}^{|f(x)|} \lambda^{-r} \phi(\lambda)d\lambda\right) d\mu(x)
$$

\n
$$
+ 2^{s}C^{s+1} \int_{X'} |f(x)|^{s} \left(\int_{|f(x)|}^{\infty} \lambda^{-s} \phi(\lambda)d\lambda\right) d\mu(x),
$$

where $X' = \{x \in X : |f(x)| > 0\}.$

On the other hand, if $x \in X'$ and p and q are such that $r < p < q_\phi$, $p_\phi < q < s$ we have

$$
\int_0^{\lfloor f(x)\rfloor} \lambda^{-r} \varphi(\lambda) d\lambda \le \alpha K \int_0^{\lfloor f(x)\rfloor} \lambda^{1-r} (\lambda/\lfloor f(x)\rfloor)^p \varphi(\lfloor f(x)\rfloor) d\lambda
$$

$$
= \frac{\alpha K}{p-r} \lfloor f(x)\rfloor^{-r} \varphi(\lfloor f(x)\rfloor)
$$

and

$$
\int_{|\mathbf{f}(x)|}^{\infty} \lambda^{-s} \varphi(\lambda) d\lambda \leq \frac{\alpha A}{s-q} |\mathbf{f}(x)|^{-s} \varphi(|\mathbf{f}(x)|),
$$

where $\alpha > 1$ is such that $s\varphi(s) < \alpha\varphi(s)$, $s > 0$. Thus, we obtain (2.18) with constant $\alpha(p-r)^{-1}2^rC^{r+1}K + \alpha(s-q)^{-1}2^sC^{s+1}A$.

The case $s = \infty$ follows trivially from the preceding using the well-known Marcinkiewicz's interpolation theorem or else it may be obtained by a simple direct proof.

ACKNOWLEDGEMENTS

The author is deeply indebted to Professor A. de la Torre for his generous help.

REFERENCES

1. R. R. Coifman and C. Fefferman, *Weighted norm inequalities for maximal functions and singular integrals,* Studia Math. 51 (1974), 241-250.

2. J. García-Cuerva, An extrapolation theorem in the theory of A_p weights, Proc. Am. Math. Soe. 87 (1983), 422-426.

3. J. Gareia-Cuerva and J. L. Rubio de Francia, *Weighted Norm Inequalities and Related Topics,* North-Holland, Amsterdam, 1985.

4. M. de Guzman, *Differentiation of Integrals in* R*, Springer-Vedag, Berlin, 1975.

5. R. Hunt, B. Muekenhoupt and R. Wheeden, *Weighted norm inequalities for the conjugate function and Hilbert transform,* Trans. Am. Math. Soe. 176 (1973), 227-251.

6. R.A. Kerman and A. Torchinsky, *Integral inequalities with weights for the Hardy maximal function,* Studia Math. 71 (1981), 277-284.

7. M. A. Krasnoselsky and V. B. Rutitsky, *Convex Functions and Orlicz Spaces,* Noordhoff, Groningen, 1961.

8. B. Muckenhoupt, *Weighted norm inequalities for the Hardy maximal functions,* Trans. Am. Math. Soc. 165 (1972), 207-226.

9. J. Musielak, *Orlicz spaces and modular spaces,* Springer-Verlag, Berlin, 1983.

10. J. L. Rubio de Francia, *Boundedness of maximal functions and singular integrals in weighted LP-spaces,* Proc. Am. Math. Soc. 81 (1981), 673-679.

11. J. L. Rubio de Francia, *Factorization theory and A_p weights*, Am. J. Math. 106 (1984), 533-547.

12. A. Torchinsky, *Interpolation of operations and Orlicz classes,* Studia Math. 59 (1976), 177-207.